• References

    DANIOVISION

Here is a selection of recent papers of zebrafish research with DanioVision. Of course there are many more. If you feel your paper should be on this list, please let us know at marcom@noldus.nl!

 

Awoyemi, O.M.; Kumar, N.; Schmitt, C.; Subbiah, S.; Crago, J. (2019). Behavioral, molecular and physiological responses of embryo-larval zebrafish exposed to types I and II pyrethroids. Chemosphere, 219, 526-537

Basnet, R.M.; Zizioli, D.; Taweedet, S.; Finazzi, D.; Memo, M. (2019). Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines, 7(1), 23

Bennett, A.H.; O’Donohue, M-F.; Gundry, S.R.; Chan, A.T.; Widrick, J.; Draper, I.; Chakraborty, A.; Zhou, Y.; Zon, L.I.; Gleizes, P-E.; Beggs, A.H.; Gupta, V.A. (2018). RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes. PLoS Genet, 14(3), e1007226.

Bos, R. van den; Mes, W.; Galligani, P.; Heil, A.; Zethof, J.; Flik, G.; Gorissen, M. (2017). Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stagePLoS ONE12 (4), e0175420
On our  blog: Strain differences in zebrafish behavior and physiology

Cai, S.; Chen, Y.; Shang, Y.; Cui, J.; Li, Z.; Li, Y. (2018). Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment. Cell Death & Disease, 9:273, doi:10.1038/s41419-018-0337-z

Cao, F.; Souders II, C.L.; Li, P.; Adamovsky, O.; Pang. S.; Qiu, L.; Martyniuk, C.J. (2019). Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio). Chemosphere, 214, 303-313

Cao, F.; Souders II, C.L.; Li, P. Pang, S.; Liang, X.; Qiu, L.; Martyniuk, C.J. (2019). Development neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. Ecotoxicology and Environmental Safety, 170, 227-237

Cao, F.; Souders II, C.L.; Li, P.; Pang, S.; Qiu, L.; Martyniuk, C.J. (2018). Biological impacts of organophosphates chlorpyrifos and diazinon on development, mitochondrial bioenergetics, and locomotor activity in zebrafish (Danio rerio). Neurotoxicology and Teratology, 70, 18-27

Cao, F.; Souders II, C.L.; Li, P.; Pang, S.; Qiu, L.; Martyniuk, C.J. (2019). Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). Environmental Science and Pollution Research, 26 (5), 4913-4923

Capriello, T.; Consiglio Grimaldi, M.; Cofone, R.; D'Aniello, S.; Ferrandino, I. (2019). Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafishChemosphere222 (2019), 243-249
On our blog: Zebrafish help us to understand neurodegenerative and neuromuscular diseases

Cornet, C.; Calzolari, S.; Miñana-Prieto, R.; Dyballa, S.; Doornmalen, E. van; Rutjes, H.; Savy, T.; D’Amico, D.; Terriente, J. (2017). ZeGlobalTox: An Innovative Approach to Address Organ Drug Toxicity Using ZebrafishInternational Journal of Molecular Sciences18, 864

Corral-Serrano, J.C.; Messchaert, M.; Dona, M.; Peters, T.A.; Kamminga, L.M.; Wijk, van, E.; Collin, R.W.J. (2018). C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish. Scienctific Reports, 8:9675, doi: 10.1038/s41598-018-27925-7

Correia, A.D.; Soares, R.S.; Rahimi, K.; Sousa, S.; Outeiro, T.F.; Afonso, N.; Willemsen, R.; Linde, H. van der. (2017). Green Fluorescent Protein Labeling of Dopaminergic Neurons in Zebrafish for the Study of Parkinson’s DiseaseJournal of Microbiology & Experimentation4(1), 00101

Cronin, A.; Grealy, M. (2017). Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson’s DiseaseNeuroscience367, 34-46.
On our blog: Putative neurorestorative drug for Parkinson's diesease tested in zebrafish

Dvir, H.; Elbaz, I.; Havlin, S.; Appelbaum, L.; Ivanov, P. Ch.; Bartsch, R.P. (2018). Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome. Science Advances, 4:eaar6277

Ellström, I.D.; Spulber, S.; Hultin, S.; Norlin, N.; Ceccatelli, S.; Hultling, C.; Uhlén, P. (2019). Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses. Journal of Neuroscience Methods, 311, 259-266

Frank, D.F.; Miller, G.W.; Harvey, D.J.; Brander, S.M.; Geist, J.; Cannon, R.E.; Lein, P.J. (2018). Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquatic Toxicology, 200, 50-61

Godfrey, A.; Hooser, B.; Abdelmoneim, A.; Horzmann, K.A.; Freemanc, J.L.; Sepúlveda, M.S. (2017). Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafishAquatic Toxicology193, 228-235

Griffin, A.; Hamling, K.R.; Knupp, K.; Hong, S.G.; Lee, L.P.; Baraban, S.C. (2017). Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndromeBrain140(3), 669-683

Grone, B.P.; Qu, T.; Baraban, S.C. (2017). Behavioral Comorbidities and Drug Treatments in a Zebrafish scn1lab Model of Dravet SyndromeeNeuro10, 1523

Gu, J.; Zhang, J.; Chen, Y.; Wang, H.; Guo, M.; Wang, L.; Wang, Z.; Wu, S.; Shi, L.; Gu, A.; Ji, G. (2019). Neurobehavioral effects of biosphenol S exposure in early life stages of zebrafish larvae (Danio rerio). Chemosphere, 217, 629-635

Gurung, S.; Asante, E.; Hummel, D.; Williams, A.; Feldman-Schultz, O.; Halloran, M.C.; Sittaramane, V.; Chandrasekhar, A. (2018). Distinct roles for the cell adhesion molecule Contactin2 in the development and function of neural circuits in zebrafish. Mechanisms of Development, 152, 1-12

Han, J.; Ji, C.; Guo, Y.; Yan, R.; Hong, T.; Dou, Y.; An, Y. Tao, S.; Qin, F.; Nie, J.; Ji, C.; Wang, H.; Tong, J.; Xiao, W.; Zhang, J. (2017). Mechanisms underlying melatonin-mediated prevention of fenvalerate-induced behavioral and oxidative toxicity in zebrafishJournal of Toxicology and Environmental Health, Part A80(23-24), 1331-1341

Hartmann, S., Vogt, R., Kunze, J., Rauschert, A., Kuhnert, K.-D., Wanzenböck, J., Lamatsch, D. K., Witte, K. (2018). Zebrafish larvae show negative phototaxis to near-infrared lightPLoS ONE13(11): e207264. DOI:10.1371/journal.one.0207264

Herbert, A.L.; Fu, M.-M.; Drerup, C.M.; Gray, R.S.; Harty, B.L.; Ackerman, S.D.; O’Reilly-Pol, T.; Johnson, S.L.; Nechiporuk, A.V.; Barres, B.A.; Monk, K.R. (2017). Dynein/dynactin is necessary for anterograde transport of Mbp mRNA in oligodendrocytes and for myelination in vivoPNAS114(43), E9153-E9162

Horzmann, K.A.; Perre, C. de; Lee, L.S.; Whelton, A.J.; Freeman, J.L. (2017). Comparative analytical and toxicological assessment of methylcyclohexanemethanol (MCHM) mixtures associated with the Elk River chemical spillChemosphere188, 599-607

Hsieh, J-H.; Ryan, K.; Sedykh, A.; Lin, J-A.; Shapiro, A.J.; Parham, F.; Behl, M. (2018). Application of benchmark concentration (BMC) analysis on zebrafish data – a new perspective for quantifying toxicity in alternative animal models. Toxicological Sciences, doi: 10.1093/toxsci/kfy258/5129061

Kim, O.-H.; Cho, H.-J.; Han, E.; Hong, T.I.; Ariyasiri, K.; Choi, J.H.; Hwang, K.-S.; Jeong, Y.-M.; Yang, S.-Y.; Yu, K.; Park, D.-S.; Oh, H.-W.; Davis, E.E.; Schwartz, C.E.; Lee, J.-S.; Kim, H.-G.; Kim, C.-H. (2017). Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autismMolecular Autism8, 50
On our blog: Knockout of down syndrome gene in zebrafish leads to autistic-like behaviors

Leighton, P.L.A.; Kanyo, R.; Neil, G.J.; Pollock, N.M.; Allison, W.T. (2018). Prion gene paralogs are dispensable for early zebrafish development but have non-additive roles in seizure susceptibility. Journal of Biological Chemistry, doi: 10.1074/jbc.RA117001171

Liang, X.; Adamovsky, O.; Souders II, C.L.; Martyniuk, C.J. (2018). Biological effects of the benzotriazole ultraviolet stabilizers UV-234 and UV-320 in early-staged zebrafish (Danio rerio). Environmental Pollution, 245, 272-281

Liang, X.; Souders, C.L.; Zhang, J.; Martyniuk, C.J. (2017). Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levelsChemosphere189, 498-506

Massarsky, A.; Abdel, A.; Glazer, L.; Levin, E.D.; Di Giulio, R.T. (2018). Neurobehavioral effects of 1,2-propanediol in zebrafish (Danio rerio). NeuroToxicology, 65, 111-124

McCammon, J.M.; Blaker-Lee, A.; Chen, X.; Sive, H. (2017). The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypesHuman Molecular Genetics26(19), 3699-3712

Moradi-Afrapoli, F.; Ebrahii, S.N.; Smiesko, M.; Hamburger, M. (2017). HPLC-Based activity profiling for GABAA receptor modulators in extracts: validation of an approach utilizing a larval zebrafish locomotor assayJournal of Natural Products80, 1548-1557

Oliveri, A.N.; Levin, E.D. (2019). Dopamine D1 and D2 receptor antagonism during development alters later behavior in zebrafish. Behavioural Brain Research, 356, 250-256

Patowary, A.; Won, S.Y.; Oh, S.J.; Nesbitt, R.R.; Archer, M.; Nickerson, D.; Raskind, W.H.; Bernier, R.; Lee, J.E.; Brkanac, Z. (2019). Family-based exome sequencing and case-controle analysis implicate CEP41 as an ASD gene. Translational Psychiatry, 9:4, doi: 10.1038/s41398-018-0343z

Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. (2017). Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)Aquatic Toxicology, doi: 10.1016/j.aquatox.2017.11.017

Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.; Levin, E.D.; Di Giulio, R.T. (2018). Maternal transfer of nanoplastics of offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Science of the Total Environment, 643, 324-334

Puttonen, H.A.J.; Sundvik, M.; Semenova, S.; Shirai, Y.; Chen, Y.-C.; Panula, P. (2017). Knock-out of histamine receptor H3 alters adaptation to sudden darkness and monoamine levels in the zebrafishActa Physiologica, doi: 10.1111/apha.1298

Quevedo, C.; Behl, M.; Ryan, K.; Paules, R.S.; Alday, A.; Muriana, A.; Alzualde, A. (2019). Detection and prioritization of developmentally neurotoxic and/or neurotoxic compounds using zebrafish. Toxicological sciences, 168(1), 225-240

Rabasco, S. (2018). Coumarin 47 and permethrin effects on zebrafish embryos: FET tests and behavioural challenges. Örebro University

Samarut. E.; Swaminathan, A.; Riché, R.; Liao, M.; Hassan-Abdi, R.; Renault, S.; Allard, M.; Dufour, L.; Cossette, P.; Soussi-Yanicostas, N.; Drapeau, P. (2018). Y-Aminobutyric acid receptor alpha 1 subunit loss of function causes genetic generalized epilepsy by impairing inhibitory network neurodevelopment. Epilepsia, 59, 2061-2074

Serafini, P.R.; Feyder, M.J.; Hightower, R.M.; Garcia-Perez, D.; Vieira, N.M.; Lek. A.; Gibbs, D.E.; Moukha-Chafiq, O.; Augelli-Szafran, C.E.; Kawahara, G.; Widrick, J.J.; Kunkel, L.M.; Alexander, M.S. (2018). A limb-girdle muscular dystrophy 21 model of muscular dystrophy identifies corrective drug compounds for dystroglycanopathies. JCI Insight, 3(18): e120493

Shontz, E.C.; Souders II, C.L.; Schmidt, J.T.; Martyniuk, C.J. (2018). Domperidone up-regulates dopamine receptor expression and stimulates locomotor activity in larvel zebrafish (Danio rerio). Genes, Brain and Behavior, 4: e12460, doi: 10.1111/gbb.12460

Steenbergen, J.P. (2018). Response of zebrafish larvae to mild electrical stimuli: a 96-well setup for behavioural screening. Journal of Neuroscience Methods, 301, 52-61

Swaminathan, A.; Bouffard, M.; Liao, M.; Ryan, S.; Callister, J.B.; Pickering-Brown, S.M.; Armstrong, G.A.B.; Drapeau, P. (2018). Expression of C9orf72-related dipeptides impairs motor function in a vertebrate modelHuman Molecular Genetics, 27(10), 1754-1762
On our blog: A new zebrafish model for ALS-related gene mutations 

Tzima, E.; Serifi, I.; Tsikari, I.; Alzualde, A.; Leonardos, I.; Papamarcaki, T. (2017). Transcriptional and behavioral responses of zebrafish larvae to microcystin-LR exposureInternational Journal of Molecular Sciences18, 365

Wang, H.; Meng, Z.; Zhou, L.; Cao, Z.; Liao, X.; Ye, R.; Lu, H. (2019). Effects of acetochlor on neurogenesis and behaviour in zebrafish at early developmental stages. Chemosphere, 220, 954-964

Wang, X.H.; Souders, C.L.; Zhao, Y.H.; Martyniuk, C.J. (2018). Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio)Chemosphere191, 106-117

Wang, X.H.; Souders, C.L.; Zhao, Y.H.; Martyniuk, C.J. (2018). Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquatToxicology Letters283, 13-20

Wang, C.; Yang, L.; Hu, Y.; Zhu, J.; Xia, R.; Yu, Y.; Shen, J.; Zhang, Z.; Wang, S-L. (2019). Isoliquiritigenin as an antioxidant phytochemical ameliorates the developmental anomalies of zebrafish induced by 22,2’,44,4’-tetrabromodiphenyl ether. Science of the Total Environment, 66, 390-398

Yang, P.; Kajiwara, R.; Tonoki, A.; Itoh, M. (2017). Successive and discrete spaced conditioning in active avoidance learning in young and aged zebrafishNeuroscience Research, doi:j.neures.2017.10.005

Xiong, G.; Zou, L.; Deng, Y.; Meng, Y.; Liao, X.; Lu, H. (2019). Clethodim exposure induces developmental immunotoxicity and neurobehavioral dysfunction in zebrafish embryos. Fish and Shellfish Immunology, 86, 549-558

Zhang, J.-L.; Souders, C.L.; Denslow, N.D.; Martyniuk, C.J. (2017). Quercetin, a natural product supplement, impairs mitochondrial bioenergetics and locomotor behavior in larval zebrafish (Danio rerio)Toxicology and Applied Pharmacology327, 30-38.

Zhou, S.; Chen, Q.; Di Paolo, C.; Shao, Y.; Hollert, H.; Seiler, T-B. (2019). Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. Science of the Total Environment, 664, 89-98