Zebrafish and withdrawal

Zebrafish and withdrawal

Recent work done by Khor et al. (2011) looked at the effect of mitragynine on behavior in zebrafish going through withdrawal after chronic morphine exposure. The effects of Mitragynine on morphine-withdrawn zebrafish.

Posted by

Christine Buske

Published on

Thu 15 Mar. 2012

A major challenge in treatment of drug addictions is the management of withdrawal symptoms, which often lead to relapse. Several pharmacological strategies exist to mitigate withdrawal symptoms, but nevertheless there is a strong need for additional options, and an increased understanding of some strategies of ‘self medication’ currently being used. 

The effects of Mitragynine on morphine-withdrawn zebrafish

Recent work done by Khor et al. (2011) looked at the effect of mitragynine on behavior in zebrafish going through withdrawal after chronic morphine exposure. Mitragynine is the most common compound found in the native south asian kratom leafs (Mitragyna speciosa). These are frequently used by drug addicts as a self-medication strategy when going through opioid withdrawal. It has a documented use for diarrhea, cough, muscular pain and fatigue, and is a natural antidepressant. Some of these symptoms are common to those experienced in opioid withdrawal as well.

Despite its documented use for common ailments and its ability to suppress withdrawal syndrome, the mechanisms by which mitragynine works are still unknown. To help improve this, first Khor et al. investigated the effects mitragynine exposure had on zebrafish going through morphine withdrawal.

At first baseline preference behavior for morphine was tested using the Conditioned Place Preference test automated by EthoVision XT. Only individuals with baseline preference between 50.1 and 79.9% for either side were chosen for subsequent experiments. The authors showed that zebrafish chronically exposed to morphine for two weeks, and subsequently withdrawn showed anxiety-related swimming patterns (reduced exploratory behavior and increases in erratic movements).

Ethovision zebrafish

This was evaluated in the novel tank diving test, previously described (Cachat et al., 2010) by analyzing the time spent in top of the tank (s); latency to top (amount of time it takes the fish to cross into the upper half of the tank; average entry duration (total time spent at top divided by the number of entries), top and bottom ratio, number of freezing bouts and duration of freezing  bouts. Physiologically, morphine withdrawal was paired with increases in whole-body cortisol levels as well. Both the behavioral and physiological effects of morphine withdrawal were reduced after exposure with mitragynine. On the gene expression level, expression of CRF-R1, CRF-R2, and prodynorphin (PDYN) genes was reduced in morphine-withdrawn zebrafish exposed to mitragynine. These genes code for receptor subtypes in the corticotropin-releasing factor (CRF) system, which is strongly involved in regulating the endocrine and behavioral responses to stress.

The link the authors were able to make between the observed behaviors (after chronic morphine exposure, and then after chronic morphine exposure combined with acute mitragynine) and physiological and gene expression changes makes a strong case for zebrafish behavioral research. This research just confirms that behavioral paradigms can form an important first line tool in the assessment of drug effects, and shape our understanding of their underlying mechanisms. However, it also illustrates how automated video tracking combined with the use of standard tests, and new adaptations to those tests, can foster high throughput studies and increase accuracy of data acquisition and analysis.








FREE TRIAL: Try EthoVision XT yourself!

Request a free trial and find out what EthoVision XT can do for your zebrafish research!

  • Track zebrafish adult, larvae or embryo
  • Suitable for tracking in any arena
  • Most cited video tracking system

References

  • Cachat, J. M., Stewart, A., Grossman, L., Gaikwad, S., Kadri, F., Chung, K. M., Wu, N., et al. (2010). Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nature protocols, 5 (11), 1786–1799. doi:10.1038/nprot.2010.140
  • Khor, B.-S., Jamil, M. F. A., Adenan, M. I., & Shu-Chien, A. C. (2011). Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PloS one, 6 (12), e28340. doi:10.1371/journal.pone.0028340

Related Posts

How optogenetics is used to study the stress response in zebrafish larvae
23 Jan animal behavior research Zebrafish Research

How optogenetics is used to study the stress response in zebrafish larvae

Stress might seem like a bad word, but it does have its perks. A recent study by Rodrigo J. De Marco uncovered the role of the pituitary in zebrafish larvae behavior after the onset of stress.
Zebrafish help us to understand neurodegenerative and neuromuscular diseases
20 Mar animal behavior research Zebrafish Research

Zebrafish help us to understand neurodegenerative and neuromuscular diseases

Teresa Capriello and colleagues use zebrafish to study the neuronal mechanisms of heavy metals in connection to neurodegenerative and neuromuscular diseases.
How to measure complex exploratory behavior in larval zebrafish
22 Mar animal behavior research Zebrafish Research

How to measure complex exploratory behavior in larval zebrafish

Behavioral tests as the open field may overlook complex patterns of behavior. Today our guest bloggers explain about a new set-up for zebrafish larvae.